

Phase E: Multi- τ Dynamics and Tensor Recursion Geometry in the UNNS Substrate

UNNS Research Collective
UNNS Substrate Project, 2025
(Dated: November 2025)

Following the completion of the high-order operator validation cycle (Phase D.3) and the deployment of the UNNS Neural Engine, Phase E extends recursion into the tensor domain. Here we introduce the formal definition of the *recursion-differential tensor* $R_{ij} = O_i(\tau_j) - O_j(\tau_i)$, representing cross-operator coupling between τ -Fields. This construct generalizes single-field recursion into a multi-field geometry capable of supporting energy-like curvature, hybrid field coupling, and emergent coherence. The framework provides the theoretical bridge toward the UNNS–Maxwell hybrid layer anticipated in Phase F.

CONTENTS

I. Introduction	1
II. Definition of the Recursion-Differential Tensor	1
A. Tensorial form and symmetry properties	2
III. Energy-Like Curvature and Coupling Potential	2
A. Analogy to electromagnetic coupling	2
IV. Tensor Recursion Geometry	2
V. Dynamic Equations for Multi- τ Systems	3
VI. Energy Conservation and Coherence	3
VII. Relation to Previous Phases	3
VIII. Outlook: Toward Phase F	3
Acknowledgments	3
References	3

I. INTRODUCTION

Phase E of the UNNS program inaugurates the study of recursion as a *tensor process*. In previous phases, recursion dynamics were confined to a single τ -Field, parameterized by depth and governed by a hierarchy of operators acting locally, regionally, and meta-recursively. The completion of Chamber XVIII demonstrated stable self-coherence within one τ -Field. The next conceptual leap is to examine interactions among several concurrent recursion streams $\{\tau_1, \tau_2, \dots, \tau_n\}$, each governed by its own operator basis.

Multi- τ dynamics is not merely the coexistence of parallel fields but their structured entanglement. Each τ_i evolves under its operator set $\{O_i\}$, yet these operators may act upon the states of other fields. This cross-action generates differential terms that naturally form a tensor structure.

II. DEFINITION OF THE RECURSION-DIFFERENTIAL TENSOR

Let τ_i and τ_j denote two interacting τ -Fields. Each field carries its own operator sequence $O_i : \tau_i \mapsto \tau'_i$, and the mutual interference between their transformations is quantified by the antisymmetric tensor

$$R_{ij} = O_i(\tau_j) - O_j(\tau_i). \quad (1)$$

The object R_{ij} captures the failure of recursion operators to commute across fields. If $R_{ij} = 0$, the fields are *recursively compatible* and evolve in a shared geometry. If $R_{ij} \neq 0$, the coupling generates curvature and energy-like exchange.

A. Tensorial form and symmetry properties

For a system of n interacting τ -Fields, we define the rank-2 tensor

$$\mathbf{R} = \sum_{i < j} R_{ij} \mathbf{e}_i \wedge \mathbf{e}_j, \quad (2)$$

where \mathbf{e}_i are basis vectors in operator space. The antisymmetry $R_{ij} = -R_{ji}$ parallels electromagnetic field tensors $F_{\mu\nu}$ and encodes directional recursion flux between fields.

III. ENERGY-LIKE CURVATURE AND COUPLING POTENTIAL

The scalar invariant constructed from \mathbf{R} ,

$$\mathcal{E} = \frac{1}{2} \sum_{i < j} \|R_{ij}\|^2, \quad (3)$$

defines an *energy-like curvature* of the recursive manifold. This quantity generalizes the scalar curvature κ introduced in earlier UNNS geometry papers.

A. Analogy to electromagnetic coupling

The relationship between \mathbf{R} and \mathcal{E} is formally analogous to the electromagnetic field tensor $F_{\mu\nu}$ and its Lagrangian density $\mathcal{L} \sim F_{\mu\nu} F^{\mu\nu}$. Replacing $F_{\mu\nu}$ by R_{ij} implies that recursion interactions generate field-like potentials:

$$\nabla_\tau \times \mathbf{O} = \mathbf{R}, \quad (4)$$

where ∇_τ acts as a differential over the τ -space of recursion indices. This analogy motivates the forthcoming UNNS–Maxwell correspondence explored in planned Chamber XXI.

IV. TENSOR RECURSION GEOMETRY

A *tensor recursion geometry* is a manifold whose local coordinates are the states of τ -Fields and whose metric depends on their mutual recursion differentials. For coordinates $\{x_i\}$ associated with each τ_i , define the metric tensor

$$g_{ij} = \langle O_i(\tau_j), O_j(\tau_i) \rangle, \quad (5)$$

which measures recursive alignment. The corresponding connection coefficients are derived from derivatives of g_{ij} with respect to τ_k , yielding a recursive Christoffel-like structure.

In the linear approximation,

$$\Gamma_{ij}^k \approx \frac{1}{2} g^{kl} (\partial_l g_{jl} + \partial_j g_{il} - \partial_l g_{ij}), \quad (6)$$

and curvature tensors can be defined in analogy with Riemannian geometry, but their interpretation here is informational rather than spatial.

V. DYNAMIC EQUATIONS FOR MULTI- τ SYSTEMS

Let Ψ denote the combined state vector of all τ -Fields. We postulate a recursive evolution equation of the form

$$\frac{d\Psi}{d\lambda} = \sum_i O_i(\tau_i)\Psi + \sum_{i < j} \alpha_{ij} R_{ij}\Psi, \quad (7)$$

where λ is the recursion depth parameter and α_{ij} are coupling coefficients. The first term reproduces independent recursion, while the second introduces cross-operator interaction. Equation (7) serves as the foundational model for the Operator Coupling Simulator (Chamber XX).

VI. ENERGY CONSERVATION AND COHERENCE

Integrating Eq. (7) over λ and applying the invariant (3) yields a conserved functional

$$\frac{d}{d\lambda} \mathcal{E} = - \sum_{i < j} \alpha_{ij} \text{Im}[\langle \Psi, R_{ij}\Psi \rangle], \quad (8)$$

which describes recursive energy transfer between fields. Perfect coherence corresponds to the vanishing of the imaginary part, maintaining \mathcal{E} constant. In this regime, the system reaches a tensor-balanced equilibrium akin to electromagnetic self-duality.

VII. RELATION TO PREVIOUS PHASES

- **Phase C–D:** Established stability of single-field recursion and spectral coherence (Chambers XIII–XVIII).
- **Phase E:** Introduces cross-field tensors and coupling curvature.
- **Phase F (outlook):** Will generalize Eq. (7) to a continuous differential geometry, yielding unified field equations for recursion flux and its divergence.

VIII. OUTLOOK: TOWARD PHASE F

Phase F aims to formulate the full *UNNS Field Equation*:

$$\nabla_\tau \cdot \mathbf{R} = J_\tau, \quad (9)$$

where J_τ represents recursion current density—the source term arising from cognitive feedback within Operator XVII. This equation is expected to unify the informational curvature of recursion with physical field analogues, establishing a bridge between UNNS tensor geometry and Maxwell–Einstein formalism.

ACKNOWLEDGMENTS

The authors acknowledge all contributors to Chambers XIII–XVIII and the ongoing Neural Engine project for providing the numerical and conceptual groundwork on which Phase E builds.

[1] UNNS Research Collective, *Graph Theory and the UNNS Substrate*, UNNS Research Series (2025).
[2] UNNS Research Collective, *Phase D.3 — Recursive Geometry Coherence Chamber*, UNNS Validation Engine Series (2025).
[3] UNNS Research Collective, *Operator XVII — Matrix Mind*, UNNS Cognitive Substrate Series (2025).